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Introduction

One-quarter of all human breast cancers lack both estrogen receptoro (ERa) and
progesterone receptors (PR). In general, these tumors are associated with poorer
differentiation, higher growth fraction, and worse clinical outcome than ER-+/PR+ breast
cancer. Also, these cancers are estrogen-independent and rarely respond to hormonal
therapy with agents like the antiestrogen tamoxifen. Recent findings suggest that
epigenetic changes may be important for tumor initiation and progression. Abnormal
methylation of CpG islands has been associated with inhibition of expression for a
variety of tumor suppressor genes, including estrogen receptor a. gene. A CpG island in
the promoter region of the ER gene is extensively methylated in ER-negative breast
cancer cells, but is unmethylated in normal breast cells. Furthermore, expression of the
major enzyme which catalyzes cytosine methylation, DNA methyltransferasel (DNMT1)
is significantly elevated in ER-negative breast cancer cell lines compared to ER-positive
lines. Thus, DNMT1 may play a role in blocking ER expression during progression to an
aggressive, hormone insensitive phenotype.

Our study tests the hypothesis that specific inhibition of DNMTT1 is sufficient to
re-express ERa. as well as other critical breast cancer genes in ER-/PR- human breast
cancer cell lines. Our results demonstrated that a specific DNMT1 inhibitor, DNMT1
antisense oligo 98 (ASO98), could dramatically inhibit DNMT1 expression at mRNA
level as well as at protein level. We also observed ERa re-expression after ASO98
treatment in two ER-negative cell lines, MDA-MB-231 and Hs578t. Further

investigation of the methylation events associated with estrogen receptor gene regulation
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will enhance our understanding of hormone resistance in breast cancer as well as search

for new therapeutic approaches for this the most common cancer in American women.




Body of Report

The work on this project is continuing on schedule. On January 1, 2000, Lan
Yan, MD, Ph.D, became the principal investigator for this grant with departure of the
former principal investigator, Sharyl Nass, Ph.D, to take a scientific position at the
Institute of Medicine. The transition was smooth, and progress has been good.

Two ER-negative human breast cancer cell lines, MDA-MB-231 and Hs578t,
were selected as model systems to test our hypothesis that specific inhibition of DNMT1
could block the synthesis of DNMT1, demethylate ERa promoter CpG island, and re-
express ERa and other breast cancer suppress genes. A DNMT1 antisense
oligonucleotide (ASO98), an 18 mer targeting the 3’-untranslated region (UTR) of
DNMT1 mRNA, as well as its missense control (ASO207) were synthesized by The
Midland Certified Reagent Company. Then effects on cell growth were first assessed.
Cells were grown in the presence of no treatment; vehicle only (Sham); DNMT1 ASO98
(100nM x 3 days for MDA-MB-231 cells or 150 nM x 3 days for Hs578t cells carried by
lipofectin (Gibco)), or ASO207 (same treatment as ASO98). Significant growth
reduction was observed for both ASO98-treated cell lines after 48 hr, and this inhibition
was more obvious after 72 hr or 96 hr. Some growth inhibition was also observed for
both mutated ASO207-treated cell lines, possibly due to the non-specific effects of ASO.
DNMT1 expression was blocked within 48 hr —96 hr of exposure to DNMT1 ASO98 as
detected by Western blot whereas mutated DNMT1 ASO207 had no effect. RT-PCR
analysis showed DNMT1 mRNA was blocked after ASO98 treatment but not the mutant

AS0207, and that reexpression of ERa, PR, Retinoic Acid Receptor B (RARp), and

Cyclin D2 (CD2) mRNA was observed in both cell lines as detected by RT-PCR. ERa.
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promoter CpG methylation status was assessed by methylation specific PCR (MSP) —a
technique designed to analyze methylation of CpG dinucleotides across the entire CpG
island. Four sets of primers (ER1, 3,4 and 5) were used to amplify overlapping fragments
of CpG island in ERa promoter region. ERa -positive MCF-7 cells were used as
unmethylated control. Distilled water instead of bisulfite-treated genomic DNA was used
as MSP-negative control. Cells treated with ASO98 showed the possibility of partial
demethylation pattern in ERS primer set. These results suggested that the re-expression
of ERa. by specific DNMT1 inhibition might not requiring CpG demethylation. Recent
studies indicated that besides maintaining CpG methylation, DNMT]1 can also form a
repressive transcription complex at replication foci with histone deacetalases (HDACs)
and a newly identified protein, DMAP1 (DNMT1 associated protein), at the non-catalytic
amino terminus of DNMT1. Whether the re-expression of ERa by ASO98 is through the
inhibition of DNMT1 expression with resulting disruption of the repressive transcription

complex at ER promoter region needs future investigation.
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Appendix 1

Key Research accomplishments

The following tasks have been completed:

1. ADNMTI antisense oligonucleotide, AS098, and its mutant control for non-specific
effects of the antisense oligo, ASO207, were synthesized by Midland Certified
Reagent Company.

2. These ASOs were introduced into ERo-negative human breast cancer cell lines,
MDA-MB-231 and Hs578t, mediated by lipofectin using a repetitive treatment
strategy (24hr, 48hr and 96hr) because of the short duration of antisense effects.

3. Growth studies indicated that Untreated and Sham samples showed little alteration in
cell growth. However, ASO98 samples were substantially growth inhibited whereas
AS0207 samples were partially growth suppressed, presumably because of non-
specific growth effects associated with the oligos.

4. Proteins were isolated from cells without any treatment (Untreated), treated with
lipofectin alone (Sham), ASO98 treatment and ASO207 treatment. Western analysis
showed substantial inhibition of DNMT1 protein expression by ASO98 but not
ASO0207. Measurement of DNMT1 enzyme activity is in progress.

5. RNAs were isolated from the same samples as above using Trizol reagent. First
strand cDNA was synthesized. RT-PCR was performed and dedemonstrated
reexpression of ERa, PR, CD2, and RARB mRNA in ASO98 treatedcells but not
ASO 207 treated cells.

6. DNAs were isolated from those samples. ERa gene methylation status was assessed

using methylation specific PCR (MSP). Specifically four sets primers (ER1, 3,4 and




5) were used to amplify overlapping fragments of CpG island in ERo promoter

region.




Appendix 2

Reportable outcomes:

1. YanL, NassJS, and Davidson NE. Effects of DNMT1 antisense
oligodeoxynucleotide on steroid receptor expréssion in breast cancer cell lines. Proc.
Am. Assoc. Cancer Res. 42:849, 2001.

2. One manuscript was published.

Nass SJ, JG Herman, E. Gabrielson, PW Iversen, FF Parl, SB Baylin, NE Davidson, and

JR Graff. Aberrant methylation of the estrogen receptor and E-cadherin 5 CpG islands

increases with malignant progression in human breast cancer. Cancer Res. 60: 4346-

4348, 2000.

3. Two manuscripts were accepted for publication.

Yan L., Yang X, and Davidson NE. Role of DNA methylation and histone acetylation in

steroid receptor expression in breast cancer. J. Mammary Grand Biol. Neoplasia 6(2):

183-192, 2001.

Yang X, Yan L, and Davidson NE. DNA methylation in breast cancer. Endocrine-

Related Reviews. (In press).
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EFFECTS OF DMT1 ANTISENSE
OLIGODEOXYNUCLEOTIDE ON STEROID
RECEPTOR EXPRESSION IN BREAST CANCER
CELL LINES

Yan, Lan; Nass, Sharyl J; Davidson, Nancy E
Johns Hopkins Oncology Center, Baltimore MD

Estrogen and progesterone and their receptors (ERa and PR) play
major roles in the development and function of the mammary gland
as well as in breast cancer biology and treatment. However,
25-30% of human breast cancers lack ERa and PR expression and
respond poorly to hormonal treatment. Absence of ERa and PR
expression is associated with lack of transcript, methylation of the
CpG islands in the promoter regions of these genes, and increased
DMT activity and DMT]1 protein. Treatment of ER-negative
human breast cancer cell lines with a non-specific DMT inhibitor
5-azacytidine led to reactivation of functional ER protein. This
study addresses the hypothesis that specific inhibition of DMT1 by
antisense oligonucleotides (DMT1 ASO) is sufficient to reexpress
ER and PR genes in ER-/PR- human breast cancer cell lines.
MDA-MB-231 and Hs578t cells were transfected with 100 nM and
200 nM DMT1ASO respectively. Significant growth reduction was
observed after 48 hr, and this inhibition was more obvious after 72
hr or 96 hr. DMT 1 expression was blocked within 48 hr of
exposure to DMT1 ASO as detected by Western blot whereas
mutated DMT1 ASO had no effect. However, methylation specific
PCR indicated that ER promoter CpG methylation was preserved
and RT-PCR did not show reexpression of ER or PR mRNA after
48 hr. Prolonged exposure to DMT1 ASO for 72 and 96 hr was
associated with DMT 1 reexpression, possibly due to the short
half-life of ASO. These results suggest that short-term inhibition of
DMT1 is not sufficient to reactivate ER or PR expression in
receptor-negative human breast cancer cells. The effects of more
prolonged exposure, expression of other methylated target genes,
and role of other members of the DMT family is under study.
Supported by DAMD 17-98-1-8116 and NIHRO1 CA78352.
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Advances in Brief

Aberrant Methylation of the Estrogen Receptor and E-Cadherin 5’ CpG Islands
Increases with Malignant Progression in Human Breast Cancer'

Sharyl J. Nass, James G. Herman, Edward Gabrielson, Philip W. Iversen, Fritz F. Parl, Nancy E. Davidson,” and

Jeremy R. Graff

Oncology Center [S.J.N., J.G. H., N. E. D, J.R. G.] and Department of Pathology [E. G.], The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231;
Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232 [F. F. P.]; Lilly Research Labs, Eli Lilly and Company, Indianapolis, Indiana 46285 [J. R. G.,
P. W. L]; and the Institute of Medicine, National Academy of Sciences, Washington, DC 20418 [S. J. N.]

Abstract

Loss of expression for both the estrogen receptor-oa and E-cadherin
genes has been linked to disease progression in human ductal breast
carcinomas and has been associated with aberrant 5 CpG island meth-
ylation. To assess when, during malignant progression, such methylation
begins and whether such methylation increases with advancing disease, we
have surveyed 111 ductal carcinomas of the breast for aberrant methyl-
ation of the estrogen receptor- e and E-cadherin 5’ CpG islands. Hyper-
methylation of either CpG island was evident prior to invasion in ~30%
of ductal carcinoma in situ lesions and increased significantly to nearly
60% in metastatic lesions. Coincident methylation of both CpG islands
also increased significantly from ~20% in ductal carcinoma in situ to
nearly 50% in metastatic lesions. Furthermore, in all cases, the pattern of
methylation displayed substantial heterogeneity, reflecting the well-estab-
lished, heterogeneous loss of expression for these genes in ductal carcino-
mas of the breast.

Introduction

Human breast carcinomas most frequently evolve from the epithe-
lial lining of the terminal mammary ducts as DCIS® that may pro-
gressively become invasive and ultimately metastatic (1). The trans-
formation of normal mammary epithelial cells into a carcinoma and
the subsequent progression to invasion and metastasis involve the
accumulation of numerous genetic “hits,” including the activation or
amplification of dominant oncogenes and the deletion or inactivating
mutation of key tumor suppressor genes (2). It has recently become
evident that tumor suppressor genes may also be transcriptionally
silenced in association with aberrant promoter-region CpG island
methylation (3, 4).

The ERa gene and the E-cad gene have been implicated frequently
in the initiation and/or progression of human breast cancer. Loss of
expression of either gene has been associated with poorly differenti-
ated tumors and poorer prognosis (5-10). Furthermore, several studies
have reported an association between E-cad and ER expression in
breast tumors (7, 9, 10). In the case of E-cad, classical mutations and
deletions may play a role in loss of gene expression (11, 12). How-
ever, loss of E-cad expression, as well as loss of ER expression, has
also been associated with aberrant 5’ CpG island methylation in breast
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cancer cell lines and primary human breast tumors (13-18). It is
currently unclear when, during malignant progression of ductal breast
carcinoma, aberrant methylation of these CpG islands begins and
whether the incidence of such methylation tracks with advancing
disease for either or both genes. Therefore, we have evaluated a total
of 111 ductal breast carcinomas for the incidence of CpG island
methylation for these two key suppressor genes in in situ, invasive,
and metastatic lesions. Our results indicate that the aberrant methyl-
ation of either CpG island begins before invasion and increases with
metastatic progression. Coincident methylation of both CpG islands
also increases with progression, suggesting that the malignant pro-
gression of ductal breast carcinoma involves the accumulation of
multiple epigenetic “hits.”

Materials and Methods

Tissue Samples. A total of 111 human breast tumor samples identified as
DCIS, IDC, and LA/MDC were obtained from the Department of Pathology at
Johns Hopkins University School of Medicine and from the Department of
Pathology at Vanderbilt University Hospital. Seventy-five % of the LA/MDC
samples were derived from lymph nodes, whereas the remaining 25% con-
sisted of samples from a variety of sites including the chest wall, bone, and
lung. Two cases of recurrent breast cancer after lumpectomy were also in-
cluded. In the case of DCIS, samples were carefully microdissected prior to
DNA isolation to avoid sample contamination with other cells. A portion of
these tumors had been analyzed previously for E-cad methylation (18). The
preliminary results of that study prompted us to expand the tumor sample pool
and to include analysis of a second gene (ER). None of the results for ER
methylation in this tumor set have been reported previously.

Cell Lines. Two human breast cancer cell lines were used as controls for
methylation assays. MCF-7 cells express both ER and E-cad, and the CpG
islands of both genes are unmethylated in this cell line. The MDA-MB-231 cell
line exhibits extensive methylation of the ER and E-cad gene CpG islands, and
the cells lack expression of the two genes at both the mRNA and protein level
(13, 14, 16, 17). The cell lines were routinely maintained as described previ-
ously (13).

DNA Isolation. DNA was isolated from the tissues and cell lines as
described previously (14, 16). DNA samples were labeled with a coded
identification number so that MSP analysis could be performed and analyzed
without knowledge of the sample origin.

MSP. ER and E-cad 5’ CpG island MSP was performed on sodium bisul-
fite-treated DNA as described previously (15, 17). The ER primers (primer set
#5; Ref. 15) target a region of the gene about 400 bp downstream from the
transcription start site near a NotI site. MSP primers spanning the transcription
start site of E-cad were described previously as Island 3 (17). Earlier studies
showed that methylation in the regions targeted by these primer sets correlated
best with loss of gene expression (15, 17). A fraction of the tumor samples in
the current study were also analyzed with additional MSP primer sets for the
two genes to verify the density of CpG island methylation in these tumors. For
many samples, the methylation status of ER and E-cad was assessed concur-
rently by including primers for both genes in the same reaction (termed duplex
PCR).
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DCIS1 DCIS2 DCIS3 DCIS4 " DCISS DCIS6
u m U m u m U m u m u m

E-cad

ER - ‘.

Fig. 1. MSP analysis of the E-cad and ER CpG islands in human breast cancers (DCIS).
MSP was used to assess the methylation status of each CpG island. Representative results
from six DCIS lesions are shown. The two genes were analyzed concurrently by per-
forming duplex PCR reactions that contained primers for both islands. u, primers specific
for unmethylated DNA; m, primers specific for methylated DNA.

Statistical Analysis. Any tumor sample that reliably yielded a PCR prod-
uct in the methylated reaction visible by ethidium bromide staining was
considered positive for CpG methylation. The Mantel-Haenszel x* test for
trend was applied to 3-by-2 tables of tumor type versus methylation (yes/no)
to assess the change in percentage of methylation with increasing tumor
progression. Then each pair of tumor types was compared using logistic
regression. Significance was set at P < 0.05.

Results and Discussion

The ER and the homotypic cell:cell adhesion molecule, E-cad, both
play a role in maintaining the normal differentiated state of the
mammary gland epithelium (6, 19). Loss of the ER during breast
cancer progression is associated with poorer histological differentia-
tion, higher growth fraction, and poorer clinical outcome and may
represent a key mechanism facilitating hormone resistance (5, 20).
Similarly, loss of E-cad expression has been repeatedly associated
with loss of differentiation, increased invasive and metastatic poten-
tial, and decreased patient survival (6, 9, 11, 21). The transcriptional
silencing of both ER and E-cad in human breast cancer has been
associated with aberrant promoter-region CpG island hypermethyla-
tion. In addition, treatment of human breast cancer cell lines lacking
ER and/or E-cad with DNA methyltransferase inhibitor (5-deoxyaza-
cytidine) elicits CpG island demethylation and re-expression of E-cad
and ER protein, thereby indicating that aberrant methylation of these

ductal breast carcinomas comprised of in situ lesions (DCIS), inva-
sive, and metastatic cancers by MSP (23).

The Incidence of CpG Island Methylation Increases with Tu-
mor Progression. MSP has been used previously to detect aberrant
DNA methylation of several genes, including ER and E-cad, in human
cancers (15, 17, 22). Neither gene is methylated in normal breast
epithelia (13-17). However, methylation of the two CpG islands was
evident in all tumor stages and showed remarkably similar increases
during progression from DCIS to metastatic tumors. Methylation of
the ER gene was evident in 34% (12 of 35) of DCIS lesions, whereas
E-cad methylation was evident in 31% (11 of 35). Coincident meth-
ylation was present in only 21% of these DCIS lesions. (Fig. 1 and
summarized in Table 1). In invasive and metastatic ductal carcinomas
(IDC or MDC), the incidence of methylation markedly increased
relative to the DCIS lesions. Twenty-five of 48 (52%) IDC samples
showed methylation of the ER or E-cad 5’ CpG island (Fig. 2; Table
1). Of these 48 samples, 18 (38%) showed distinct, coincident meth-
ylation of both CpG islands. Of the locally advanced and metastatic
tumor samples, nearly 60% exhibited methylation for each of the CpG
islands (Fig. 2; Table 1), whereas coincident methylation of both CpG
islands was apparent in 50% (14 of 28) of these samples.

These data indicate that the epigenetic inactivation of either gene
may occur early, prior to invasion, but increases as cells acquire
invasiveness and metastatic potential. The Mantel-Haenzael x* test for
trend demonstrated that the trend toward increased methylation during
progression was statistically significant for each gene (P < 0.05;
Table 1). Furthermore, pair-wise comparison of the three tumor stages
demonstrated that the incidence of methylation in metastatic tumors
was significantly higher than in DCIS for both ER (odds ratio, 2.96;
P = 0.039) and E-cad (odds ratio, 3.37; P = 0.022). The incidence of
methylation in IDC samples was not statistically different from the
other two categories, however.

The trend toward increasing coincident methylation of the two
genes during progression was also statistically significant (P = 0.013;

Table 1 Incidence of CpG island methylation for ER and E-cad genes in human
breast tumors

. . . . .. % ER and % ER or

CpG islands plays a substantial role in suppressing transcription of Tumor % ER % E-cad E-cad E-cad
these two key suppressor genes in breast cancer cells (16, 22). type methylation  methylation  methylation  methylation

Because expression of both ER and E-cad is lost in association with All 49% (54/111)  48% (53/111  35% (39/111)  61% (68/111)
aberrant 5’ CpG isla thylati ing br ioenesi DCIS 34% (12/35)  31% (11/35)  21%(7/35)  46% (16/35)

rrant 5 CpG island methylation during breast tumorigenesis, we o 52% (25/48)  52% (25/48)  38% (18/48)  67% (32/48)
sought to define the stage of breast tumor progression at which the  pampc 61% (17/28)  61% (17/28)  50% (14/28)  71% (20/28)
hypermethylation of these two CpG islands begins and whether such P (trend) M-H® )2 0.034 0.019 0.013 0.032
methylation tracks with advancing disease. We analyzed a total of 111 “ M-H, Mantel-Haenszel.

PCR controls Tumor 1 Tumor 2 Tumor 3 Tumor 4
water MCF7 MDA-231 1° met 1° met 1° met 1° met

u m u m u m

E-cad

Fig. 2. MSP analysis of the E-cad and ER CpG islands in human breast cancers (IDC and MDC). Representative results from four primary (I°)-metastatic (met) pairs are shown.
MSP reactions for E-cad and ER were run and analyzed separately. Metastatic sites were as follows: 1, bone; 2, chest wall; 3, axillary lymph node; 4, supraclavicular Iymph node. u,
primers specific for unmethylated DNA; m, primers specific for methylated DNA. Water served as a negative control, and DNA from MCF-7 and MDA-MB-231 cells served as positive

controls for the unmethylated and methylated reactions, respectively.
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Table 1). Thus, the frequency of coincident methylation of both CpG
islands increases with advancing disease, suggesting that malignant
progression of ductal breast carcinoma involves the accumulation of
multiple epigenetic “hits.” However, it is important to note that the
similarity in the trends for ER and E-cad methylation was not attrib-
utable to complete coincidence of methylation for the two genes. At
every stage of progression, the rate of coincident methylation was
lower than the incidence of methylation for each individual gene
(Table 1). Overall, ~25% of the samples analyzed showed methyla-
tion of either ER or E-cad, but not both. These results imply that
aberrant methylation of these CpG islands does not simply reflect a
generalized increase in CpG island methylation but may reflect a more
specific selection process targeting key suppressor genes.

CpG Island Methylation Is Heterogeneous in Breast Tumors.
In all samples harboring methylation, unmethylated alleles were in-
variably also evident (Figs. 1 and 2). For the IDC and LA/MDC
samples, which were not microdissected, these unmethylated alleles
may reflect the contribution from normal cells in the sample. Alter-
natively, these alleles may be derived from cancer cells that harbored
only unmethylated copies of the E-cad and ER CpG islands. However,
this same heterogeneous pattern was evident in the methylated DCIS
samples, which were carefully microdissected, suggesting that meth-
ylation of these CpG islands in these tumors is heterogeneous. Inter-
estingly, expression studies have routinely revealed that the loss of
both E-cad and ER exhibits distinct heterogeneity in ductal breast
carcinomas (6, 9, 10, 24). In addition our earlier studies have dem-
onstrated that heterogeneity of both ER (15) and E-cad (18) methyl-
ation is associated with heterogeneity of protein expression. Limita-
tions in our ability to recover the tissue specimens associated with
these DNA samples (especially those derived from in situ lesions)
precluded a simultaneous evaluation in this study. However, it seems
likely that the heterogeneous patterns of CpG island methylation
parallel the heterogeneous loss of E-cad and ER expression in these
tumors.

In summary, these data indicate that the malignant progression of
human ductal breast carcinomas involves a heterogeneous pattern of
methylation for both the ER and E-cad 5’ CpG islands that begins
prior to the acquisition of invasiveness and increases for each CpG
island with advancing disease. In the case of E-cad, these results are
particularly striking because loss of E-cad expression is generally
associated with the acquisition of invasive or metastatic potential
rather than the earlier stages of tumorigenesis. Finally, the increase in
the coincident methylation of both CpG islands suggests that malig-
nant progression of human breast cancer involves not only the well-
documented accumulation of genetic “hits” but also an accumulation
of epigenetic “hits” that contribute to the diminished expression of
key tumor suppressor genes like ER and E-cad.
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Role of DNA Methylation and Histone A cetylation

in Steroid Receptor Expression in Breast Cancer

1

Lan Yan,? Xiaowei Yang,? and Nancy E. Davidson??

DNA methylation is an epigenetic modification that is associated with transcriptional silenc-
ing of gene expression in mammalian cells. Hypermethylation of the promoter CpG islands
contributes to the loss of gene function of several tumor related genes, including estrogen

receptor « (E

nd progesterone receptor (PR). Gene expression patterns are also heavily

influenced by changes in chromatin structure during transcription. Indeed both the predom-

inant mammalian DNA methyltransferase (

T1), and the histone deacetylases (HDAGs) & Cl"““‘Je “U

play crucial roles in maintaining transcriptionally repressive chromatin by forming suppressive : pwT! "o
complexes at replication foci. These new findings suggest that epigenetic changes might play
a crucial role in gene inactivation in breast cancer. Further, inhibition of DNA methylation
and histone deacetylation might be a therapeutic strategy in breast cancer, especially for those
cancers with ER and PR negative phenotypes.

KEY WORDS: Breast cancer; DNA methylation; histone acetylation; steroid receptor.

INTRODUCTION

DNA Methylation and Cancer-Related
Gene Expression

Approximately 3-5% of the cytosine residues in
the human genome are methylated (1). Seventy to
eighty percent of these 5-methylcytosines are located
in clusters of CpG dinucleotides, termed CpG islands,
typically found in the 5’ promoter region and first exon
of certain genes (2). This methylation modification is
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tor (PR); DNA methyltransferase (OMT); histone deacetylase
(HDAC); histone acetyltransferase (HAT); methylation-specific
polymerase chain reaction (MSP); S-azacytidine (5aza); 5-aza-2'-
deoxycytidine (deoxyC); trichostatin (TSA); retinoic acid (RA);
acute promyelocytic leukemia (APL).

essential not only in mammalian development, but
also in epigenetic regulation of gene expression, in-
cluding genomic imprinting and X chromosome in-
activation (3-5). Methylation of a CpG island is fre-
quently associated with loss of expression of the target
gene. Recent studies have provoked increasing inter-
est in the role of DNA hypermethylation in tumori-
genesis through its ability to alter the expression of
tumor suppressor genes (6).

The DNA methylation reaction ig catalyzed by a
family of DNA methyltransferases ( s) by use of
the universal meghyl donor, S-adenosyl-methionine.
Three distinct Ts have peen identified in gnam-
malian cells so far, namely Ti, T2 and 3.

T1 is constitutively expressed in mammalian cells
and its function is to maintain the identical methy-
lation pattern after DNA replication (7). That this
function is critical is suggested by the finding that
Iiﬁ'ntl gene knockout mice demonstrated global DNA
demethylation and embryonic lethality (8, 9). On the
other hand, somatic knockout of the T1 gene in
human colorectal carcinoma cells led to markedly de-
creased cellular I5£4T activity, but only a 20% de-
crease in overall genomic methylation was observed,

1083-3021/01/0400-0183$19.50/0 © 2001 Plenum Publishing Corporation
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mainly at juxtacentromeric satellites. Most of the
gene-specific CpG islands analyzed remained fully
methylated and silenced (10). These results suggest
that ﬂidTl might not be the only critical enzyme in
maintaining human genome methylation status, and
its exact role in mammalian development and gene
transcripfion regulation needs to be further eluci-
dated. T2 is expressed at low levels in most adult
tissues examined but recombinant mouse T2 has
no DNA methyltransferase activity (11-13). Thus the
importance of q T2 is not clear. T3 does have
de novo methyltransferase activity and is highly ex-
pressed ig embryonic sfem cells. It has two isoforms,
namely 3A,and B. Unlike DMT2, recom-
binant mouse T3A and 3B can methylate cyto-
sine residues in yarious native and synthetic DNA
templates (14). vaiVITSA expression is ubiquitous. It
be readily detected in most adult tissues, whereas
T3B expression is highly elevated in several tu-
mor cell lines, including leukemia, melanoma, and
cqlorectal cancer cell lines, to a level comparable to
T1 in these cell lines, (15). How othelb&fl}" fam-
ily members, such as T2, DMT3A, B, or
other novel methylating proteins contribute to CpG
methylation during normal development or tumori-
genesis needs to be addressed in future study.
Methylation patterns in tumors are perplexing.
In general, the level of 5-methylcytosine in tumor cells
is lower than that in normal cells (16, 17). However,
this global hypomethylation is observed in conjunc-
tion with regional hypermethylation at CpG islands,
in turn associated with transcriptional inactivation of
an increasing number of cancer-related genes. Thus
far, a variety of genes, including tumor suppressor
genes, DNA mismatch repair genes, cell cycle related
genes, hormone receptors and tissue or cell adhesion
molecules have been reported to be regulated by pro-
moter CpG methylation. The inactivation of gene ex-
pression by aberrant CpG island hypermethylation is
supported by studies using the demethylating agents,
S-azacytidine (5aza) and 5-aza-2'-deoxycytidine
(deoxyC). Application of these agents to several
cancer cell lines has been shown to demethylate CpG
islands and reactivate expression of the previously
silenced genes. In addition, recent studies suggest
that hypermethylation of a CpG island not only can
silence the gene it regulates, but also facilitate genetic
alterations in tumor progression. P16'NK% (18-21),
MLH1 (22, 23), and GSTP1 (24, 25) are the best
examples to support this “facilitation hypothesis.”
Accumulating evidence suggests that hypermethy-
lation of these three genes occurs in the early stages
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of tumorigenesis, predisposing cells to later genetic
instability, which then contributes to tumor progres-
sion. Thus it appears that both epigenetic and genetic
changes can contribute to the carcinogenic process.

Histone Acetylation, Chromatin Stability
and Gene Expression

Chromatin structure and gene transcription are
regulated partially by histone acetylation. During the
S phase of the cell cycle, histone acetyltransferases
(HAT) transfer an acetyl moiety to the e-amino group
of the amino acid, lysine, on histones, leading to neu-
tralization of the positive charge and reduced affin-
ity of histone for DNA. The ultimate consequence
of this acetylation modification is the transformation
of a tight-coiled inactive chromatin structure into a
loose, transcriptionally active one (26). This process
is reversed by histone deacetylation mediated by his-
tone deacetylases (HDAC) during the G2 phase of the
cell cycle. Deacetylated histones expose their positive
charges to negatively charged DNA, leading to a con-
densed inactive chromatin structure. HDAC seems to
play a role in gene silencing as well as in transcrip-
tional activation (27, 28). In addition, HDACs are
also involved in cell differentiation, cell-cycle arrest,
apoptosis, chemosensitization, radiosensitization, an-
titumor effects and up-regulation of MHC class I (29).
Three families of HDAC have been characterized
so far, S. cerevisiae RPD3p (mammalian equivalents
HDACs 1,2 and 3), S. cerevisiae HDAIp (mammalian
equivalents HDACs 4, 5 and 6), and Zea mays HD2
(29). The understanding of these deacetylases, espe-
cially the roles of HDACI and 2 in transcription reg-
ulation, is expanding.

Like DNA methylation, histone acetylation has
recently been associated with tumorigenesis. For ex-
ample, HAT CBP (a CREB-binding protein) is fused
to the MLL gene in cases of acute leukemia or
myelodysplasia secondary to therapy with drugs tar-
geting DNA topoisomerase II (30, 31). This novel
fusion protein leads to dysregulated histone acetyla-
tion that might contribute to the leukemogenic pro-
cess (31). Histone acetylation may also play a role
in breast cancer. The carboxy-terminal domains of
proteins encoded by the breast cancer susceptibil-
ity genes, BRCA1 and BRCA2, can interact with
Rb and Rb binding proteins as well as HDAC1 and
HDAC2 (32). It has been proposed that the recruit-
ment of HDACs by BRCA proteins could cause gene
deregulation in the progression of hereditary breast
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cancer (33, 34). For additional discussion of BRCA1
and BRCAZ2, see in this issue the article by Mielnicki
et al. (35).

Molecular Mechanisms for the Epigenetic
Regulation of Gene Expression

It appears that both DNA methylation and his-
tone acetylation are involved in epigenetic regulation
of gene expression in normal mammalian develop-
ment as well as in tumorigenesis through their ability
to modify chromatin structure during transcription. It
also has been demonstrated that methylated inactive
genes are associated with underacetylated histones
whereas unmethylated active genes are linked to hy-

peracetylated histones (36, 37). These observations
raise the following question{\How do DNA methyla-

tion and histone acetylation inhibit transcription? Do
these processes interact with each other or act sepa-
rately during this process? Are there any other factors
involved?

Recent studies suggested that T1 can form
a repressive transcription complex at replication foci
with HDAC?2 and a newly identified protein, DMAP1
(DMT!1 associgted protein), at the noncatalytic amino
terminus of T1. DMAP1 has intrinsic transcrip-
tion repressive activity and jnteracts with T1
throughout S phase, whereas HDAC2 joins the com-
plex only during late S phase. Thesg findings indicate
that there is a connection between ];éd I'l and HDAC,
and histone deacetylation mediated by HDAC oc-
cyrs after DNA replication (38). In another study,

T1 has been shown to form a transcription re-
pressive complex with Rb, E2F1 and HDAC1 (39).
Therefore, T1, in addition to its function of main-
taining CpG methylation, has direct inhibitory effects
on transcription by formation of a repressive complex
during DNA replication.

DNA METHYLATION AND HISTONE
ACETYLATION IN REGULATION OF ER
AND PR EXPRESSION IN BREAST CANCER

ER and PR Expression in Normal Mammary Gland
and Breast Cancer

Estrogen and progesterone and their receptors
play important roles in the development and function
of the mammary gland as well as other female re-
productive organs. At puberty, the hypothalamus and
pituitary gland stimulate the ovary to secrete estrogen

that is responsible for the proliferation of the mam-
mary epithelial cells and elongation and branching of
mammary ducts. Progesterone is synthesized by the
corpus luteum and placenta to promote the growth of
mammary lobuloalveolar structures, especially dur-
ing pregnancy in preparation for milk secretion after
parturition (40). Although estrogen and progesterone
receptors are expressed at very low basal levels in nor-
mal human mammary epithelial cells after a woman
reaches sexual maturity (41, 42), they seem to play
an important role in the initiation, progression and
prognosis of breast cancer. They are also good predic-
tors for endocrine therapy (43). Approximately two-
thirds of breast cancers express ER transcript and
synthesize ER protein at levels higher than in nor-
mal breast tissues and half of these ER-positive tu-
mors express both ER and PR protein (ER+/PR+)
(43). These tumors tend to be more differentiated
and are more responsive to hormonal therapies. One-
quarter of all breast cancers lack both ER and PR
(ER—/PR-). In general, these tumors are associated
with poorer differentiation, higher growth fraction,
and worse clinical outcome than ER+/PR+ breast
cancer (43). These cancers are estrogen-independent
and rarely respond to hormonal therapies. Of note,
up to one-third of initially ER+ tumors can evolve to
an ER— status during tumor progression and become
resistant to hormone therapy (44).

ER Methylation and l&' Expression

in Breast Cancer

The human ER ¢DNA and gene were cloned in
1986 (45-47). This 140 kb ER gene has eight exons
and is located on chromosome 6g25.1. Since then, ef-
forts have been devoted to the possible molecular ge-
netic mechanisms for the loss of ER expression in
breast cancers. Genetic changes, such as insertions,
deletions, rearrangements, or point mutations of the
ER gene were extensively sought in breast cancer cells
since these in-frame or out-of-frame sequence alter-
ations would lead to either absence of ER expression
or expression of an unstable mutant that might be de-
graded shortly after protein translation by the ubiqui-
tin protease system. Although several sequence mu-
tations for the ER gene were identified and shown
to be related to decreased ER expression and estra-
diol binding, they are uncommon and cannot explain
the loss of ER expression in a significant fraction
of human breast cancers (40). This finding suggests
that mechanisms other than genetic changes might
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Table L Frequency of ER Gene Methylation of Primary Breast
Human Tissues by Use of Southern Blot Analysis®

Genotype ER gene methylation at the
nodl site
ER+/ PR+ tumor 0/29 (0%)
ER+/ PR— tumor 0/24 (0%)
ER~/ PR tumor 9/39 (25%)
ER-/ PR— metastases 2/2 (100%)
Normal breast 0/9 (0%)

2Adapted from Ref (51).

also contribute to the loss of ER expression in breast
cancer.

One extensively studied epigenetic mechanism
that mightlead toloss of ER expression is CpG methy-
lation. Interestingly, the ER gene has a CpG island in
its promoter and first exon regions marked by a clus-
tering of sites for methylation-sensitive restriction en-
donucleases (46, 48[(_1‘3{1) In addition, absence of
ER protein expression in human breast cancer spec-
imens is frequently associated with loss of ER tran-
script (49). Those findings raise the possibility that
absence of ER expression is associated with ER gene
hypermethylation.

We have addressed this hypothesis using hu-
man breast cancer cell lines as a model system. Ot-
taviano et al. (50) reported that ER— human breast
cancer cells displayed extensive methylation of the
CpG island in the 5’ promoter region of the estrogen

Yan, Yang, and Davidson

receptor gene, in association with silencing of ER gene
expression. The 6.3 kb ER mRNA transcript was de-
tected easily in three ER+ cell lines (MCF-7, T47D
and ZR75-1), but none was detected in three ER— cell
lines (Hs578t, MDA-MB-231 and MDA-MB-468).
Southern blot analysis using methylation-sensitive re-
striction enzymes showed that the ER CpG island
was methylated at a critical Nofl site in multiple ER-
negative breast cancer cell lines. As expected for an
autosomal gene, the ER gene was unmethylated at
the NofI site in the CpG island in all normal tissues
studied including breast epithelium. In addition, the
ER gene was unmethylated at multiple other restric-
tion sites in its CpG island in all ER+ cell lines stud-
ied, but these sites were frequently methylated in
ER-negative cell lings. Of note, the major DNA
methyltransferase, T1, was highly expressed in
ER- cell lines at the mRNA level as well as the pro-
tein and enzymatic activity levels. Careful assessment
of the relationship between ER expression and DMT1
showed that DMT1 protein expression was correlated
with S-phase fraction in ER-positive cell lines, but not
in ER-negative cell lines. Thus T1 expression was
elevated in ER-negative cell lines and was unlinked
from cell cycle regulation (51).

A key question is whether these tissue culture
findings have any relevance to human breast can-
cer. Using Southern blot analysis, Lapidus et al. (52)
reported that the ER CpG island was methylated
at the Notl restriction site in 9 of 39 (25%) of

ER CpG density

ATG

ER1 (200 bp)

I e e T 1 I i

0f +233 +427 !

T T T T TT TTTT

Notl/Sacll

ER2 (116 bp)

ER3 (120 bp)

ER4 (132 bp)

ERS (120 bp)

Fig. 1. Map of ER CpG istand and locations of PCR products generated by use of specific
ER MSP primers. Box represents exon 1 of ER gene.
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primary ER— breast cancers but remained unmethy-
lated in 53 ER+ breast cancers and 9 normal breast
specimens (Table I).» The possible explanations for
the different Iféquency of ER methylation in cell
lines and tissues include the presence of normal
cells in primary cancers, heterogeneity of ER ex-
pression within breast cancers, methylation of other
sites within the CpG island which were not ex-
amined, and the relative insensitivity of Southern
blot analysis. These possibilities have been partially
addressed through the development of a PCR-based
assay termed methylation-specific PCR or MSP, a
technique designed to analyze methylation of CpG
dinucleotides across the entire ER CpG island (Fig.1).
By use of MSP, normal breast tissues and ER+ cell
lines shown only an unmethylated product across all
S primer sets used, whereas ER— cell lines shown
methylated products across much of the island (52)
w . To confirm that ER CpG methylation could
¢ detected by MSP in primary human breast can-

cers, a panel of 33 primary breast cancers of known
receptor status was studied. All 33 tumors showed
at least some degree of methylation at one or more
primer sites. By use of a semiquantitative scoring sys-
tem for elevated CpG density, the percentage of tu-
mors displaying substantial methylation can be calcu-
lated for each pufioiset defined by receptor status.
As shown in étﬁgly\about one-third of ER+/PR+
tumors showed methylation, whereas the percentage
increased to 100% in ER—/PR— tumors (53). Taken
together, data derived from both our study and oth-
ers (54) support a correlation between absence of ER

Table IL. ER Gene Methylation of Human Breast Cancer Lines by
Use of MSP?

Source ER1 ER2 ER3 ER4 ERS

Normal breast - - - —_ -

Epithelial cells

ER+ cell lines
MCF-7 - - - - -
T47D - - — - -
ZR-75-1

ER- cell lines
MDA-MB-231
Hs578t
MDA-MB-435
MDA-MB-468
MCF-7/Adr

!
|
|
1
|

+ 4+ W+ +
+H o+
H H W H o+
HH o+ o+ o+
H H W+ o+

4The results of normal breast epithelial cells are representative of
five normat breast epithelial samples. “+”: methylated; “~”: un-
methylated; “+”: heterogeneous, both methylated and unmethy-
lated PCR products. Adapted from Ref. (53).

Table ITL. ER Gene Methylation of Primary Human Primary Breast

Cancers by Use of MSP
Receptor status No. of tumors No. of methylated
tumors (percentage)
ER+/PR+ 11 4 (36%)
ER+/PR~ 11 8(72%)
ER-/PR— 11 11 (100%)
2 Adapted from Ref. (53).

expression and aberrant CpG island methylation of
ER gene. Whether methylation status actually acts
solely or partially to silence ER transcription is a key
question.

Demethylation of the ER Gene Results
in Re-Expression of ER
slew ) ‘*\)— s

If ER expression m a function of CpG island
methyﬁtion of ER gene, it is possible that demethy-
lation should result in the re-expression of ER in
ER— breast cancer cells. In accord with this pre-
diction, treatment of the ER— human breast can-
cer cell line, MDA-MB-231, with the demethylat-
ing agents, 5-aza and deoxyC, led to re-expression
of ER (55). After treatment with either drug, the
DNA from these cells became partially demethy-
lated at several methylation-sensitive restriction en-
zyme sites, including Hhal, Nof, and Sacll, within
the ER promoter CpG island. Demethylation corre-
lated with re-expression of the ER gene as detected
by reverse transcriptase-PCR (RT-PCR) as demon-

strated @J and Western Blot analysis. Func-
tional activity of this ER protein was examined in
two ways. First, its ability to activate expression of
an endogenous estrogen-inducible gene, PR, was as-
sessed. PR mRNA and protein were induced by es-
trogen treatment of deoxyC treated MDA-MB-231
or Hs§78t cells. Second, the ability of the deoxyC-
induced ER to transduce expression of a luciferase
reporter gene linked to an estrogen response element
(ERE) was assessed. MDA-MB-231 cells were stably
transfected with an ERE-tk-luciferase construct with
the expectation that deoxyC-induced ER expression
would increase luciferase expression. As expected,
increased luciferase activity (1.5-5.6 fold in 10 inde-
pendent clones) over the background level of the un-
treated cells was observed (54). These results provide
powerful evidence that DNA methylation of the ER
CpG island plays a functional role in suppression of
ER expression in ER— breast cancer cells.
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Fig. 2. RT-PCR analysis of ER mRNA re-expression by TSA
(100 ng/ml x 2 days) or deoxyC (2.5 uM x 4 days) treatment in
ER— MB-MDA-231 cells. -actin RT-PCR product was used as a
control for the amount of RNA used.

DNA Methylation and PR Gene Expression

As discussed in the Introduction, one quarter to
one-third of breast cancers lack both ER and PR,
whereas another one-third are ER+ but PR—. It also
has been demonstrated that the expression of PR re-
quires ER as a transcriptional activator (56). There-
fore, the presence of PR in ER+ tumors may be a
better predictor of hormone responsiveness than ER
alone (43). Interestingly, the PR gene also has a typical
CpG island in its first exon. The PR CpG island is 1 kb
in size, has 70% GC content, and contains a wide ar-
ray of methylation-sensitive restriction sites. Southern
analyses targeted at three methylation-sensitve re-
striction sites in the PR CpG island showed that these
sites are not methylated in normal breast tissue speci-
mens but are hypermethylated in 40% of primary tu-
mors that lack PR protein expression (52). Thus the
question of why the PR hypermethylation could be
responsible for a lack of PR expression was studied
in MDA-MB-231 cells which lack both ER and PR
(57). Treatment of these cells with the demethylat-
ing agent, deoxyC, led to partial demethylation of the
ER and PR CpG islands and was associated with in-
duction of PR protein expression as demonstrated by
Western blot analysis. However, Ferguson et al. (57)
Using MDA-MB-231 cells stably transfected with an
inducible expression vector for ER, found that the in-
duction of PR gene expression by ligand-bound ER
did not require demethylation of the PR CpG island.
In addition, induction of PR transcription was inhib-
ited by blocking the interaction of ER with SRC-1A,
a coactivator of ER function. These results suggested
that a transcription factor with the potential to re-
model heterochromatin (ER) could activate PR gene
expression without altering the methylation status of
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the CpG island in the PR gene. These results raise
the possibility that demethylation and histone acety-
lation are distinct but complementary mechanisms
for destabilizing heterochromatin and activating gene
transcription (58).

Histone Acetylation and ER Expression

As discussed earlier, histone acetylation and
deacetylation are intimately involved in chromatin
structure changes during transcription. In additions,
new models of transcriptiona) suppressive complexes
suggest that HDACs and %Tl are in direct con-
tact. Recent studies indicate that silencing of a gene
by methylation involves the generation of an inactive
chromatin structure in which methyl CpG-binding
protein (MeCP2) and the adapter protein, mSin3A,
recruit histone deacetylase (59, 60). The deacetylation
of lysine groups of histones H3 and H4 allows ionic
interactions between positively charged lysines and
negatively charged DNA, resulting in a more com-
pact nucleosome structure that limits gene activation.
The question emerges of whether epigenetic modi-
fication of histone acetylation alone could result in
re-expression of genes that are inhibited by the tran-
scriptional suppressive complex, or whether both his-
tone acetylation and CpG demethylation are required
for this event.

The answers to this question have been vari-
able. For example, HDAC inhibitors like trichostatin
(TSA) or phenylbutyrate alone restored retinoic acid
receptor @ (RARe) expression in retinoic acid (RA)
resistant acute promyelocytic leukemia (APL) cell
lines as demonstratated by the differentiation of APL
cells in the presence of RA (61-63). However, hy-
permethylated genes such as MLH1, TIMP3, INK4B
(p15) and INK4a (p16) could not be transcriptionally
reactivated by TSA alone, but could be re-expressed
in colon cancer cells with a combination of TSA and
the demethylating agent, 5-aza (58).

To study the role of histone acetylation in ER ex-
pression, ER— MDA-MB-231 cells were treated with
HDAC inhibitor, TSA. A time- and dose-dependent
reactivation of ER mRNA expression was observed
(64). As shown in Fig. 2, TSA alone at 100 ng/ml for 2
days could reactivate ER expression as well as deoxyC
in ER— MDA-MB-231 breast cancer cell line. By use

of quantitative competitive PCR assay, an increase
G of 59)fold of ER transcript expression was reported

(64). MSP analysis of the ER CpG island showed no




P1: GDB/LOV
Journal of Mammary Gland Biology and Neoplasia (JMGBN)

P

U\pjh (s;

g\s:)w‘k S

P2: GCQ/LOV QC: GFU

i e

DNA Methylation and Histone A cetylation in Breast Cancer

change in its methylation after TSA treatment, sug-
gesting that TSA’s effects on ER re-expression were
not associated with a change in methylation status.
This finding was confirmed via a more rigorous as-
say, bisulfite genomic sequencing of the ER promoter
region, a technique which permits the direct exami-
nation of the methylation status of each CpG dinu-
cleotide within the promoter region. Multiple clones
of control and TSA-treated cells were examined and
did not show any change in the methylation status of
the ER gene with TSA. A logical extension of these
studies will be to examine the effect of combinations
of demethylating agents and HDAC inhibitors on ex-
pression of ER as well as other methylated genes in
breast cancer cells.

DNA Methylation and HDAC Inhibitors
as Therapeutic Strategies in Breast Cancer

Abundant evidence indicates that epigenetic
mechanisms play pivotal roles in the pathogenesis of
cancer. Both DNA methylation and histone acetyla-
tion have been shown to be involved in the regula-
tion of expression of cancer-related genes. The stud-
ies in breast cancer summarized earlier demonstrated
that both demethylating agents and HDAC inhibitors
could re-activate expression of a number of important
growth regulatory genes in several breast cancer cell
lines, thus raising the possibility of using these types
i f agents agtherapeutic strategies for breast cancer.
3 R ess, Saza and deoxyC, have
been studled chmcally, particularly in patients with
hemoglobinopathies. For example, Saza has been suc-
cessfully used to treat patients with B-thalassemia.
It has been reported that loss of expression of the
y-globin gene is associated with methylation of its
promoter (65). Infusion of 5aza into B-thalassemia
patients led to an increase of y-globin expression and
amelioration of anemia (66). Similarly, Saza can in-
crease HDF production and reduce anemia in sickle
cell disease (67). In addition, in an ongoing trial,
the efficacy of treatment of nasopharyngeal tumors
with 5aza is being evaluated. The promoter of one
of the Epstein Barr Virus-related proteins is heavily
methylated in nasopharygneal carcinoma. It has been
proposed that demethylation of this promoter could
lead to reactivation of an EBV latency protein that
could then become the target for a secondary immune
therapy (R. Ambinder, Johns Hopkins Oncology
Center, personal communication). Another possible
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approach is to use antisense oligonucleotides against
DNA methyltransferase to inhibit DNA methyla-
tion. It has been shown that antisense oligonu-
cleotides have in vitro and in vivo antitumor activity
and a clinical trial of this approach is in progress
(68, 69).

Several HDAC inhibitors have the potential to
be used as anti-cancer agents (29). The most plausi-
ble and extensively studied are butyrate, M

\TSA% trapoxin (TPX) and their relatives. The
ICs of butyrate for HDAC is in the millimolar range,
whereas TSA and TPX act at low nanomolar concen-
trations. One triglyceride analogue of the short-chain
fatty acid butyrate, tributyrin, has been reported to
induce transcription of p21, arrest of cellsin G2/M and
apoptosis in MCF-7 human breast cancer cell lines.
(70). Two butyrate derivatives, phenylbutyrate (PB)
and phenylacetate (PA), have powerful growth in-
hibitory effects on several cell types including ovarian
and prostate cancers (71). A clinical trial with sodium
phenylacetate in patients with thalassemia showed
an increase of fetal hemoglobin in some patients
(72). Other HDAC inhibitors under study include
FR901228, oxamflatin, depudecin, suberoylanilide
hydroxamic acid (SAHA), m-carboxycinnamic acid
bishydroxamide (CBHA)) and apicidin.

A potential strategy is to combine demethylating
agents and HDAC inhibitors. From a clinical point-of-
view, the potential benefits of this combination could
include lowering of drug concentration requirements,
shorter periods of drug exposure, and lower toxic-
ity, as well as the possibility of synergy. For example,
synergistic effects were observed in a combination
study with both a demethylating agent and a HDAC
inhibitor in colon cancer cells. If cancer cells were
treated with 100 nM 5aza (a dose that had little effect
on gene expression if used alone) for 24 hours fol-
lowed by 300 nM TS A for 24 hours, (again a treatment
that was ineffective alone), re-expression of several
genes was obvious (58). A key question in develop-
ment of this strategy will be the specificity and se-
lectivity of gene re-expression patterns and how they
might be exploited clinically.

Finally, it should be noted that demethylation
and histone acetylation are only two mechanisms for
epigenetic regulation of target genes like ER. Other
transcriptional modulators might also contribute to
the epigenetic regulation of gene expression. For ex-
ample, it was reported that AP2 transcription factor
can trans-activate the cloned human ERa promoter
in MDA-MB-231 cells (73).
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CONCLUSIONS

The evidence for epigenetic regulation of gene
expression in tumorigenesis is accumulating. Two
components, demethylation of C5-methylcytosines at
the CpG island within the promoter region of target
genes and histone acetylation of chromatin, have been
studied extensively by use of demethylating agents
and HDAC inhibitors. ER and PR, two critical genes
in breast cancer development and treatment, have
been reported to be densely methylated in ER— but
not ER+ human breast cancer cell lines. Treatment of
ER— human breast cancer cells with a demethylating
agent or a HDAC inhibitor can lead to reactivation

- of ER expression in these cells. However, demethyla-
tion of PR CpG island is not required for PR expres-
sion. These data in combination with similar results
observed with other critical genes in breast cancer
and other types of cancer support the potential for
compounds that can modulate epigenetic regulation
in the treatment of human cancers.
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1. Abstract

Like all cancers, breast cancer is considered to result in part from the accumulation of
multiple genetic alterations leading to oncogene overexpression and tumor suppressor
loss. More recently, the role of epigenetic change as a distinct and crucial mechanism
to silence a variety of methylated tissue-specific and imprinted genes has emerged.
This review will briefly discuss basic aspects of DNA methylation, recent advances in
DNA methyltransferases, the role of altered chromatin organization and the concept of
gene transcriptional regulation built on methylated CpGs. In particular, we discuss
epigenetic regulation of certain critical tumor suppressor and growth regulatory genes




implicated in breast cancer, and its relevance to breast cancer progression, diagnosis and
therapy.

2.1. Cytosine methylation and CpG islands in mammals

In vertebrate genomes, methylation of DNA occurs on cytosine residues of the CpG
dinucleotides in DNA (Bird 1980). Mammalian genome contains about 3-6% of
methylated cytosine residues in the 5 position of the CpG sequences, approximately 70
to 80% of these CpG sites in human are methylated (Antequera & Bird 1993, Bird
1995, Vanyushin et al. 1970). Cytosine residues in newly synthesized DNA are
methylated by a DNA-cytosine methyltransferasel, DNMT 1 (Bestor 1988, Bestor &
Verdine 1994). This enzyme transfers a methyl group from the methyl donor, S-
adenosylmethionine, to nascent DNA using a hemimethylated DNA template in order to
maintain DNA methylation patterns during cell division in mammals. CpG
dinucleotides are not randomly distributed throughout the genome. Rather they are
frequently clustered into CpG islands, regions that are rich in CpG sites. These islands
extend about 0.5-3 kb, occur on average every 100 kb in the genome and are often
found in the promoter area of genes (Cross & Bird 1995). Indeed, approximately half
of all genes in the human (~45,000 genes) contain CpG islands (Antequera & Bird
1993). CpG island methylation plays a role in such diverse functions as gene
imprinting (Forne et al. 1997, Reik & Walter 1998), X-chromosome inactivation (Heard
& Avner 1994, Heard et al. 1997), normal development (Li ez al. 1993, Weiss & Cedar
1997), repression of gene transcription (Cedar 1988, Keshet et al. 1985) (Chan et al.
2000) and the suppression of parasitic DNA sequences (Yoder ez al. 1997).

2.2 DNA methyltransferases

Mammalian DNA methylation is carried out by members of DNA cytosine-
methyltransferase (Dnmt) family. Three members of the Dnmt gene family have been
identified to date. Direct sequence analysis has revealed that the Dnmt gene family is
highly conserved among eukaryotes, suggesting a central role of these proteins for
mammalian development (Bestor 2000).

DNMT]1 is the best known and studied DNMT family member. It is primarily a
maintenance methylase, that is, it reproduces DNA methylation patterns from
hemimethylated DNA during cell division (Bestor 1988). However, there is some
evidence that DNMT1 may also have de novo methylase activity, at least in in vitro
system (Laayoun & Smith 1995, Pradhan et al. 1997). Dnmt] gene knockout mice die
in mid-gestation with reduced levels of DNA methylation (Li et al. 1992), disrupted
imprinting and ectopic X chromosome activation (Li et al. 1993), indicating that
maintenance of DNA methylation is pivotal for development.

The human DNMTI gene is located at human chromosome 19p13.2 (Yen et al.
1992) and encodes a 200 kDa protein whose methyltransferase catalytic domain is
located at the C terminus of the protein. The large N terminal portion of DNMT1
targets to replication foci through proliferating cell nuclear antigen (PCNA) (Chuang ez
al. 1997). Recent studies have identified new functions for this domain. First, its




amino acid (653-730) sequence that contains CXXC motif interacts directly with
histone deacetylases, which act to remove acetyl tails from histones in the nucleosome
to generate a transcriptionally inactive chromatin structure (Fuks ef al 2000).
Secondly, through its first 120 amino acids, it binds to a transcriptional co-repressor,
DMAPI1, that represses transcription independent of histone deacetylase activity
(Rountree et al. 2000). Lastly, amino acids 416-913 of the N terminus of DNMT]
interact with the retinoblastoma protein, Rb (Robertson et al. 2000). Thus, the N-
terminal portion of DNMT1 alone or in collaboration with other co-repressors and
recruited HDACs significantly suppresses transcription in vitro.

A large body of data demonstrates that DNMT1 activity is elevated in neoplastic
cells and this increased activity is associated with increased cell proliferation (el-Deiry
et al. 1991), tumorigenesis (De Marzo et al. 1999), and tumor progression (Issa et al.
1993). For example, over-expression of DNMT1 can transform NIH-3T3 mouse
fibroblast cells (Wu et al. 1993), and inhibition of this enzyme by antisense constructs
can induce global DNA demethylation and revert malignant phenotype (Ramchandani
et al. 1997). In addition, fos-mediated transformation of normal fibroblast is associated
with increased DNMT]1 expression and total methylation content in the genome (Bakin
& Curran 1999). Finally, it is also reported that elevation of DNMT1 is an essential
component of transformation induced by SV40 large T antigen via the Rb pathway
(Slack et al. 1999).

However, increased DNMT1 expression is apparently not an obligatory feature of
malignant cells (Eads ez al. 1999). Somatic knockout of DNMT! expression in human
colon cancer cells is not a lethal event. Further, total genomic methylated CpG content
was reduced by only about 20% and certain gene-specific CpG island methylation
patterns were maintained (Rhee et al. 2000). These findings, together with the
observation that embryonic stem (ES) cells from DNMTI knockout mice are still
capable of de novo methylation, suggest the possible existence of other cytosine DNA
methyltransferases (Lei et al. 1996, Li et al. 1992).

One such methyltransferase, Dnmt2, was isolated by several groups (Okano et al.
1998). However, its catalytic domain lacks methyltransferase activity in human and it
is not discussed further.

Two isoforms of DNMT3 family enzyme, de novo DNA methyltransferases 3a and
3b (Dnmt3a and 3b) were recently isolated in mouse (Okano et al 1999). They
methylate CpG dinucleotides of unmethylated and hemimethylated DNA in vitro. The
two genes are expressed at high levels in embryonic stem cells and relatively low levels
in adult somatic tissues. Human DNMT3a has been mapped to chromosome 2p23
whereas DNMT3b maps to chromosome 20q11.2 (Robertson et al. 1999, Xie et al.
1999).

Disruption of both Dnmt3a and Dnmt3b in mice by gene targeting blocks de novo
methylation in ES cells and early embryos, but has no effect on maintenance of
imprinted methylation pattern (Okano et al. 1999). However, methylation capability is
retained after inactivation of either Dnmt3a or 3b, indicating some redundancy in the
function of these two de novo methylases. Dnmt3b appears to be critical for the
methylation of a particular compartment of the genome; loss of DNMT3b catalytic
activity by gene mutation in ICF syndrome causes demethylation of only specific




families of repeated sequences and CpG islands on the inactive X chromosome (Hansen
et al. 1999). Human DNMT3A is ubiquitously expressed but DNMT3B is expressed at
low levels except testis, thyroid and bone marrow. Both over-expression of DNMT3b
and DNMT3a appears to characterize multiple types of human tumors (Xie et al. 1999).
Four spliced forms of DNMT3b with altered enzymatic activity were expressed in a
tissue-specific manner (Robertson ef al. 1999). Future study will be needed to elucidate
the possible roles of DNMT3 family members in tumorigenesis, de novo tissue-specific
gene methylation and transcriptional regulation in somatic tissues.

2.3. DNA methylation patterns in normal and cancer tissues

Cell type and tissue-specific methylation patterns are established during early
development in part through the action of the de novo methyltransferases 3a and 3b
(Okano et al. 1999). The sperm genome is extensively methylated while the oocyte
genome is not. After fertilization, genes are demethylated and then remethylated before
implantation . As the embryoblast differentiates, tissue-specific genes are demethylated
in a tissue-specific fashion while housekeeping genes remain demethylated from
fertilization through organogenesis (Bestor 1998).

CpG islands are generally unmethylated in normal adult tissues with the exception
of transcriptionally silent genes on the inactive X chromosome and imprinted genes like
HI9 gene (Tremblay et al. 1995). Conversely, most neoplastic tissues demonstrated
whole genomic hypomethylation and local promoter hypermethylation in certain critical
tumor suppressor and growth regulatory genes . The mechanism responsible for this
type of pattern remains largely unclear. It is believed that the cell cycle checkpoint
gene, p2174 " may play a role in methylation regulation (Baylin e al. 1998). Since
p21 competes with DNMT1 binding to PCNA, loss of p21 function may increase
DNMT]1 at replication sites (Chuang et al. 1997). In addition, mutation of another cell
cycle gene, Rb, may play a role as Rb mutation in its A/B pocket domain might disrupt
the function of the transcriptionally repressive protein complex that involves Rb,
DNMTI1 and HDAC. Mistargeting of DNMT1 could then result (Robertson et al.
2000). Together those observations are beginning to shed light on the paradox of global
hypomethylation, increased CpG island hypermethylation, and increased DNMT1
activity in tumor cells.

2.4 DNA methylation and genetic instability

DNA methylation changes may ultimately lead to the genetic instability
characteristic of cancer. For example, mutation in the well-known p53 tumor
suppressor gene frequently occurs at CpG dinucleotides as a consequence of a transition
from methylated cytosine to thymine (Magewu & Jones 1994). Similar transitions
characterize the mutation found in several other tumor suppressor genes (Ghazi et al.
1990). Further, a p53-inducible gene, 14-3-3 o is methylated and inactivated in many
breast cancers. Loss of its expression may also facilitate the accumulation of genetic
damages and immortalization of the cell (Ferguson et al. 2000).




Also, inactivation of certain other genes that are involved in DNA repair may
predispose to genetic instability (Herman & Baylin 2000). For instance, methylation of
MLH], a gene involved in mismatch repair, precedes the MIN+ phenotype in sporadic
colon, gastric, and endometrial cancers (Esteller et al. 1999). Further, there is a striking
correlation between mismatch repair, genetic instability and methylation capacity in
colon cancer cell models (Lengauer ef al. 1997, 1998). In addition, promoter CpG
island methylation and resulting inactivation of the detoxifying n-class glutathione S
transferase (GST) can lead to accumulation of oxygen radicals and subsequent DNA
damage. The resulting adenine or guanine mutations are implicated in carcinogenesis in
prostate, breast and other tissues (Henderson et al. 1998, Lee et al. 1994, Matsui et al.
2000).

2.5 CpG island methylation, chromatin organization and gene transcriptional
regulation

Much experimental evidence has documented the association of CpG island
methylation and gene transcriptional inactivity but only recently have the underlying
mechanisms of transcriptional silencing by methylation partially clarified. One possible
mechanism of transcriptional repression is the direct interference by methylation with
the binding of sequence-specific transcription factors, such as AP-2, E2F and NFkB to
DNA (Hermann & Doerfler 1991). A second possibility is that methylated CpG
sequences recruit transcriptional co-repressors like mSin3A, DMAP1, TSG101 or Mi2,
thereby contributing to transcriptional repression. Finally, chromatin structure is
emerging as an important and more generalized mechanism to silence a variety of
methylated tissue-specific and imprinted genes by HDAC family members. The
deacetylation of lysine groups of histones H3 and H4 allows ionic interactions between
positively charged lysines and negatively charged DNA, resulting in a more compact
nucleosome structure that limits gene activity. The discovery of the family of methyl-
CpG-binding proteins provides a mechanistic linkage between DNA methylation and
histone deacetylation as mediators of gene transcription. To date, six methyl-CpG-
binding proteins including MeCP2, MBD1, MBD2a, MBD2b and MBD3 have been
identified in vertebrates (Nan et al. 1998, Ng et al. 2000, Ng et al. 1999, Snape 2000,
Wade et al. 1998). The common functional features for these proteins are that they bind
to methyl-CpGs in DNA and frequently associate with members of the HDAC family,
which currently includes eight distinct members (Ng & Bird 2000). That these
processes might collaborate to regulate gene expression is demonstrated by a recent
study, showing that multiple hypermethylated genes, such as MLHI, TIMP3, CDKN2B
and CDKN24, could be robustly reactivated by a combination of DNMT1 and HDAC
inhibition, suggesting that DNMT1 and histone deacetylase are both essential in the
silencing process in these colon cancer cells (Cameron et al. 1999). The above
observation was confirmed by a very recent study that the known DNA methylation
machinery protein, DNMT1 itself, is implicated in forming transcriptionally repressive
complex with histone deacetylase as well as other co-repressors (Rountree ef al. 2000).




A large body of evidence has demonstrated that CpG island hypermethylation is
implicated in loss of expression of a variety of critical genes in breast cancer. Some
important genes inactivated by methylation in breast cancer are summarized in Table 1
and described below. They fall into several broad categories including cell cycle
regulating, steroid receptor, tumor susceptibility, cell detoxifying, cell adhesion and
inhibitors of MMPs genes.

3. Methylation of cell cycle-related genes in breast cancer
3.1 pl6/p16™*/CDKN2A/MTS methylation and breast cancer

The pl6 gene is located on chromosome 9p21. It encodes a cyclin-dependent kinase
inhibitor, p16™**, that regulates the transition from G1 to S-phase via its effect on Rb
phosphorylation (Liggett & Sidransky 1998). The transcription of the p16™* gene can
yield two distinct transcripts (o or B) that code for two functionally distinct proteins,
pl6™%4 and p19°**. These two transcripts share identical second and third exons but
have a distinct first exons (Sharpless & DePinho 1999). Loss of p16™** is a common
feature of many cancers resulting from homozygous deletion, methylation of pl6
promoter or point mutation. The first two mechanisms are responsible for the majority
of the gene inactivation in multiple cancers. Methylation of the 5° promoter and exonl
regions is observed in both human breast cancer cell lines (Table 2) and 20-30% of
primary breast cancers (Herman et al. 1995). DNAs from normal breast tissues are
unmethylated whereas from some breast carcinomas are methylated, supporting altered
methylation pattern in cancer (Woodcock et al. 1999). The methylation phenotype is
associated with loss of expression at both mRNA and protein levels although lack of
correlation with some important clinical parameters in some relatively small cohort
studies. A study of analyzing 97 patient showed no association between pl6
methylation and overall or disease-free survival (Hui et al. 2000).

The stepwise inactivation of cyclin D-dependent kinase inhititor p1 in human
mammary epithelial cells (HMEC) is associated with progressive methylation of the
pl6 promoter CpG island. This allows HMEC cells to escape from MO proliferation
block, thereby identifying CpG methylation together with p/6 silencing as a possible
contributor to breast tumorigenesis (Foster et al. 1998).

6INK4A

3.2 14-3-3 sigma (o) gene inactivation by methylation

The /4-3—30 gene (also known as HME1), is localized at chromosome 1p35, and is a
member of a gene family responsible for instituting the G, cell cycle checkpoint in
response to DNA damage in human (Chan et al. 1999). Normally expression of ¢ is
induced in response to DNA damage, and it causes cells to arrest in G,. However,
o protein expression was downregulated in a significant fraction of primary bladder,
colon and breast tumors (Celis et al. 1999). Studies of the molecular mechanisms
responsible for the reduced expression have implicated hypermethylation of the CpG-
rich exonl region of the gene (91%), instead of genetic alterations such as LOH and




intragenic mutations in breast cancer (Ferguson et al. 2000). DNA from HMECs,
immortal MCF-10A and HBL100 cells and two breast cancer cell lines, MCF-7 and
MDA-MB-231, were unmethylated at the sigma locus. In contrast, Hs578t and MDA-
MB-435 cells were fully methylated as demonstrated by bisulfite genomic sequencing
and MSP analyses. The use of 5-aza-dC to treat the methylated non-expressing lines in
vitro led to induction of & transcription, further supporting the role of CpG island
methylation in its repression. In addition, six DNA samples from micro-dissected
normal mammary epithelial cells demonstrated an unmethylated pattern while 32
samples from microdissected breast carcinomas were methylated. Together these cell
line- and tissue-based studies support a role for methylation in the loss of 14-3-3 sigma
expression in breast cancer.

4. Methylation of steroid receptor genes in breast cancer

The methylation of three members of the steroid hormone superfamily has been
extensively studied in breast cancer models. These include estrogen receptor o (ER),
progesterone receptor (PR) and retinoid receptor  (RARP).

4.1 Estrogen receptor  (ER) methylation and hormone resistance

Steroid hormones, particularly estrogen, have long been linked to mammary
carcinogenesis (Fishman et al. 1995). The role of estrogen and its catechol metabolite
in breast cancer initiation and promotion is a continuing area of controversy (Yager
2000). But that 17p-estradiol stimulates the growth of certain breast cancers via
functional ER is well recognized, and endocrine therapy like antiestrogens is an
established and important part of breast cancer management (Davidson 2000, Ruiz-
Cabello et al. 1995). The presence of ER in breast tumors is a predictive marker for
response to hormone therapy. However, up to one third of breast carcinomas lack ER at
the time of diagnosis and a proportion of cancers that are initially ER-positive lose ER
during tumor progression (Hortobagyi 1998). Genetic alterations, such as homozygous
deletion, loss of heterozygosity (LOH), or ER gene mutation have not been reported to
play a major role in loss of ER expression.

However, recent studies have shown that epigenetic alteration appears to play a role
in inactivation of the gene (Ottaviano er al. 1994). The ER gene, located at
chromosome 6q25.1, has a CpG island in its promoter and first exon regions. As
demonstrated by Southern and methylation-specific PCR analyses, the ER CpG island is
unmethylated in normal breast tissue and ER-positive tumor cell lines, such as MCF-7,
T47-D and ZR75-1; it is methylated in ~50% of unselected primary breast cancers and
most ER-negative cancer cell lines e.g., MDA-MB-231, MDA-MB-435, MDA-MB-
468, Hs578t, and MCF-7/Adr (Table 2) (Lapidus et al. 1998). The ER CpG island
methylation is associated with reduced or absent ER mRNA expression. The use of
methyltransferase inhibitor 5-aza-C and 5-aza-dC led to partial demethylation and
restoration of ER mRNA expression, and synthesis of functional ER protein (Ferguson
et al. 1995). Restored ER function was documented by eliciting ERE-driven promoter




activity from an exogenous plasmid as well as expression of the ER-responsive gene,
PR.

In order to study de novo ER gene methylation in vitro, DNMT]1 activity levels were
measured in a panel of breast cancer cell lines. Expression of DNMT1 at both RNA
and protein levels in ER-negative breast cancer cell lines is significantly elevated in ER-
negative breast cancer cell lines compared with their ER-positive counterparts
(Ottaviano ef al. 1994). Detailed studies showed that DNMT1 expression was tightly
correlated with S phase fraction in ER-positive cells, while ER-negative cells expressed
DNMT]1 throughout the cell cycle, suggesting its expression is dysregulated in ER-
negative breast cancer cells (Nass et al. 1999). The data also showed that DNMT1 and
p21 expressions are inversely correlated in breast cancer cell lines examined. Studies
using DNMT1 antisense constructs showed that decreased expression is linked to
increased p21 protein expression. Since p21 competes with DNMT]1 for targeting to
PCNA, the increased p21 may lead to inhibition of DNA replication and methylation in
these tumor cells (Chuang ef al. 1997).

A related question is whether an inactive chromatin structure mediated by histone
deacetylase is involved in ER gene silencing. In fact, inhibition of histone deacetylase
by TSA induced ER transcript by 5-fold in a panel of well-characterized ER-negative
MDA-MB 231, Hs578t and MCF-7/Adr cell lines. This transcriptional reactivation is
associated with increased sensitivity to DNasel at ER locus without alteration of the
methylated CpG sites, suggesting that open chromatin structure is associated with ER
expression even in the presence of ER CpG island methylation (). Our findings
identified a role for both DNA methylation and histone acetylation in the regulation of
ER gene transcription.

4.2 Progesterone receptor (PR) gene methylation

The progesterone receptor (PR) gene, located at chromosome 11q13, also has a CpG
island in its first exon (Lapidus et al. 1996). The PR gene encodes two isoforms, hPR,,
(79 kDa) and hPR; (109 kDa), which differ in both their amino terminal sequences and
biological activities. The hPRy transcript is preferentially induced by ER while the
hPR, is not. Since ligand-bound ER is a major transcriptional activator of hPR, gene
expression, the presence of PR is indicative of functional ER. PR gene methylation has
been demonstrated by Southern analysis in ~40% of PR-negative breast tumors and
several PR-negative breast cancer cell lines (Table 2). A possible functional role for PR
CpG island methylation is suggested by the observation that treatment of PR-negative
MDA-MB-231 cells with 5-aza-dC in the presence of estrogen led to partial
demethylation of PR CpG island and reexpression of PR gene. Co-treatment with both
5-aza-dC and a pure anti-estrogen, ICI182,780 prevented PR reactivation, suggesting
that demethylation is not sufficient to reactivate PR expression. Rather it appears that
ER-mediated chromatin remodeling is essential and sufficient to activate PR gene
expression even in the presence of a methylated PR CpG island (Ferguson et al. 1998).

4.3 RAR 32 promoter methylation and refractory to differential therapy




The retinoic acid receptors (RAR-a, -B, and -y) and retinoid X receptors (RXR-o,  and
-y) are also members of the nuclear receptor superfamily (Minucci & Pelicci 1999). All

six of these receptors are ligand-activated transcription factors. The RARJ gene, located
at chromosome 3p24, appears to play an important role in limiting the growth of certain

tumor types, including breast, lung and others . RARS2 expression is often reduced or
lost in breast cancer cells and they become resistant to induction by all-trans-retinoic
acid (ATRA). DNA methylation of R4Rf promoter is believed to be one of the factors
linked to RARP2 down-regulation in breast cancer. RARS promoter methylation has
been demonstrated by Southern and methylation-specific PCR analyses in several
RARP2-negative human breast cancer cell lines and about one third of unselected
primary breast cancer specimens. It is not observed in normal breast tissue or HMECs.
There is no apparent correlation with ER status. As with other methylated genes,
treatment of RARP2-negative cell lines with 5-aza-dC can partially re-induce RAR[B2
transcripts. Of note, the HDAC inhibitor TSA can also reactivate RARB2 expression in
the presence of a methylated promoter, implicating inactive chromatin conformation as
another possible regulatory process.

5. Glutathione S transferase (GSTPI) inactivation by methylation and its
predisposition to genetic instability

Glutathione (GSH) and its corresponding cytosolic glutathione S-transferases (GSTs)
are involved in the detoxification pathway of xenobiotics and chemotherapeutic agents
(). They catalyze intracellular detoxification reactions by conjugating chemically
reactive electrophiles to glutathione, inactivating electrophilic carcinogens (). The
GSTs, encoded by several different genes at different loci, have been classified into
o,u,n and O families (). The m-class GST, encoded by the GSTP! gene, on
chromosome 11, is of particular importance in breast cancer (). In cultured breast
cancer cell lines an inverse relationship between GSTPI and ER gene expression has
been reported, i.e., GSTPI was expressed in ER-negative but not in ER-positive lines
(Table 2) although the underlying mechanism is unclear (). Treatment of GSTPI-
negative cell line MCF-7 with 5-aza-dC could induce mRNA expression and de novo
synthesis of m-class protein (). MSP-based studies of human tissues demonstrated that
GSTPI promoter methylation is associated with gene inactivation in about 30% of
primary breast carcinomas (). The detection of GSTP1 methylation correlates with PR
expression but there was no correlation with other clinical parameters such as the age of
onset, histological type and grade, tumor size, nodal metastasis, DNA ploidy, or ER
status (). It is postulated that methylation-associated inactivation of GSTPI can result
in adenine or guanine mutation by estrogen metabolites-DNA adduct formation () and
lead to a drug-resistant phenotype and genetic instability ().

6. BRCAI methylation in sporadic breast cancer
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The BRCAI gene, located at chromosome 17921, is a well-known breast cancer
susceptibility gene. Inhibition of BRCAI expression through antisense oligonucleotides
increases the proliferation of normal and malignant mammary cells while
overexpression of wild-type BRCA1l suppresses MCF-7 breast cancer cell
tumorigenesis in mice (). Inherited mutations in the BRCAI gene account for one-half
of inherited breast carcinomas. However, in contrast to other tumor suppressor genes,
somatic mutations in this gene have not been reported, despite the high degree of loss of
heterozygosity at the BRCAI locus in sporadic breast and ovarian cancer (). Since
BRCAI transcript and protein are either absent or reduced in sporadic breast cancer,
DNA methylation has been proposed as an alternative mechanism to inactivate the
BRCAI (). By Southern analysis of the BRCAI promoter region, methylation was
detected in 11% of sporadic breast cancer cases and was inversely correlated with
expression of both ER and PR (). A study with 194 primary breast carcinomas
demonstrated that the BRCAI promoter is methylated in 13% of unselected primary
breast tumors. BRCA1 methylation was especially associated with medullary and
mucinous subtypes. As expected, BRCA1 was unmethylated in all normal tissues
examined as well as 21 breast cancer cell lines (Table 2). The methylation was present
in two breast cancer xenografts with concomitant loss of gene transcript. In this study
one allele is lost by LOH and the other is inactivated by aberrant methylation, thereby
resulting in biallelic inactivation and loss of functional BRCAI gene product. Finally,
BRCAI methylation is only observed in breast and ovary cancers but not in tumors of
colon, liver or leukemia, supporting a tissue-specific event for the process. Using
chromatin immuno-precipitation and endonuclease chromatin accessibility assays,
transcriptional repression of BRCAI by cytosine methylation is also mechanistically
linked to histone deactylation and inactive chromatin structure.

7. E-cadherin gene methylation and breast tumor progression

The E-cadherin gene, located at chromosome 16q22.1, encodes a cell-surface adhesion
protein that is important in maintaining homophilic cell-cell adhesion in epithelial
tissues. Considerable evidence shows that loss of expression and function in E-cadherin
protein contributes to increased proliferation, invasion, and metastasis in breast cancer
(). Classical mutations and deletions clearly play a role in loss of the E-cadherin
expression and function (). However, Several studies demonstrate that epigenetic
silencing of the E-cadherin gene by 5’-CpG methylation occurs in some human breast
cancer cell lines (Table 2) as well as about 50% unselected primary breast cancers ().
Its loss of expression is associated with tumor metastatic progression and decreased
patient survival (). Our recent work demonstrated that hypermethylation of the E-
cadherin CpG island was evident in about 30% of ductal carcinoma in situ and
increased significantly to nearly 60% of metastatic lesions (), suggesting a role for this
process in tumor progression.

8. Methylation and inactivation of 7IMP3 gene
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TIMP-3 belongs to a family of molecules that inhibit the proteolytic activity of the
matrix metalloproteinases (MMPs). This protein can suppress primary tumor growth
via their effects on tumor development, angiogenesis, invasion and metastasis.
Methylation of this 5°CpG island has been associated with the loss of TIMP-3
expression at both transcription and protein levels in several tumor types. The TIMP-3
promoter region is methylated in ~30% of human breast cancer cell lines as well as
~30% of primary breast tumors. The gene methylation has been associated with its loss
of expression. Expression could be restored by 5-aza-dC treatment, again supporting a
role for epigenetic mechanism in TIMP3 gene regulation.

9. Clinical implications of DNMT and HDAC inhibitors

The classic DNA methyltransferase inhibitor, 5-aza-cytidine (5-aza-C) and 5-aza-2’-
deoxycytidine (2-aza-dC) are cytosine analogs, which inhibits the enzyme by formation
of covalent adducts between DNA methyltransferase and 5-aza-dC-substituted DNA to
irreversibly inactivates DNA methyltransferase (). These cytosine analogs have a
remarkable ability to induce heritable changes in gene expression (reviewed by Haaf
1995). They have been, for more than 20 years, broadly used as valuable tools to
reactivate the methylated gene expression in vitro (). These cellular processes are
associated with demethylation, in a replication-dependent manner, of specific DNA
sequences although genes may be activated by other effects of 5-aza-C analogs, such as
on chromatin structure. By gene expression microarray approach to examine the effect
of 5-aza-dC treatment in HT29 colon adenocarcinoma cells, induction of the IFN-
response pathway as a major cellular response was identified (). This study found that
5-aza-dC treatment sensitized these colon cancer cells to growth inhibition by
exogenous IFN-a2a, suggesting 5-aza-dC can be investigated as a potentiator of IFN
responsiveness in certain IFN-resistant tumors.

The elevated levels of DNA methyltransferase activity in cancer have prompted
targeting of DNMT1 as an anticancer strategy. The two analogs have been used
clinically for the treatment of patients with myelodysplasia, hemoglobinopathies and
leukemia (). In an effort to investigate the role of DNA methyltranserasel in
oncogenesis, specific potent DNMT1 anti-sense inhibitors have been developed. These
anti-sense oligonucleotide or oligodeoxynucleotide can form a stable complex with
DNMT1 and inhibit its activity (). With this approach specific reduction of cellular
DNMTT1 levels in human bladder and A549 human non-small lung cancer cells was
achieved (). At the meantime, the anti-sense inhibitor causes demethylation of p16™**
gene promoter, re-expression of pl6™* protein, accumulation of the
hypophosphorylated form of retinoblastoma protein (pRB) and cell growth arrest (). In
the same study it is found that a rapid increase in the cell cycle regulator p21"#"<"*/
protein follows the stepwise reduction of cellular Dnmtl levels by anti-
senseoligonucleotide treatment. All these findings demonstrated that specific targeting
of DNMT1 could activate silenced tumor suppressors.

Several structural classes of HDAC inhibitors have been identified. First of all,
short-chain fatty acids such as sodium phenylbutyrate (PB), with an active HDAC
inhibiting dose at millimolar levels, is currently clinically approved HDAC inhibitor.
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The second class of HDAC inhibitor are hydroxamic acids, such as trichostatin A
(TSA), a potent HDAC inhibitor that works at nonomolar levels, and suberoylanilide
hydroxamic acid (SAHA), which is effective at micromolar levels. TSA has been
widely used to inhibit HDAC activity to study gene transcriptional regulation ().
SAHA, recently, has been demonstrated its antitumor activity in vivo in addition to its
activity in vitro. With the use of SAHA one study showed that N-methylnitrosourea-
induced mammary carcinoma in rats has been dramatically reduced, without apparent
toxicity, in compared to control rats (). Similar results also obtained through other
experiments with animals using SAHA (). Thereby, SAHA has currently entered in
several phase I clinical trials (). The third class of HDAC inhibitor is benzamide
derivative, e.g., MS-27-275, which also showed a marked in vivo antitumor activity
against human tumor in xenograft mice (), demonstrating its potential utility in clinical
settings. The fourth class is cyclic tetrapeptides containing a 2-amino-8-0x0-9, 10-
epoxy-decanoyl (AOE) moiety such as trapoxin A (). And the fifth one is cyclic peptide
do not contain the AOE moiety such as FR901228 and apicidin (). In common, these
HDAC inhibitors could acetylate the core histones and induce growth arrest,
differentiation in cultured transformed and neoplastic cells (). For example, SAHA
induces terminal cell differentiation (milk protein synthesis) in MCF-7 human breast
cancer cells () and in malignant cells of other types (). Virtually all the five classes of
HDAC inhibitors (e.g., PB, TSA, SAHA, MS-27-275) demonstrated the ability to
induce G1 arrest by upregulation of p21/Waf1/Cipl. Increased p21 expression led to
growth arrest in cancer cells by blocking cyclin-dependent kinase and proliferating cell
nuclear antigen.

Inhibition of histone deacetylation strategy demonstrated its clinical utility,
especially if combined with other types of therapy. For example, a patient with acute
promyelocytic leukemia resistant to all trans-retinoic acid developed a sustained
remission after concomitant treatment with PB and all trans-retinoic acid (). In animal
experiment the combined use of tamoxifen or raloxifene with retinoic acid prevented
mammary carcinogenesis induced by N-nitoso-N-methylurea in Sprague-Dawley rats ().
Other potential combinations, such as DNMT1 and HDAC, or DNMT1 and all trans-
retinoic acid, or tamoxifen, even multiple combinations such as DNMT, HDAC and
tamoxifen, may also benefit some tumor patient who are refractory to hormonal therapy.
These combinations may increase therapeutic effects, minimize toxicity and increase
target specificity.

10. Conclusions and future directions

Taken together, substantial evidence demonstrated that epigenetic mechanism in
transcriptional regulation of critical tumor suppressor and growth-regulatory genes in
breast cancer. These genes play crucial roles in DNA repair, cell cycle regulation, cell
growth, cell-cell adhesion, and metabolism. Therefore, it is not surprising that loss of
these critical genes by methylation could lead to mutations in DNA, abnormal cell cycle
control, formation and metastasis of tumors as well as other cell dysfunctions.
Furthermore, 5-methyl cytosine as intrinsic mutagen, plus dysregulated DNA
methyltransferasel activity all possibly contribute to tumorigenesis and/or progression
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of breast cancer, and resistance to chemoprevention, chemotherapy, hormonal, and
differential therapies. A better understanding of epigenetic regulation of gene
expression in a gene-specific and tissue-specific fashion, will help to selectively
modulate gene expression, eventually, lead to improved breast cancer prevention and
therapy.
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